例6 小明用21.4元去买两种贺卡,甲卡每张1.5元,乙卡每张0.7元,钱恰好用完.可是售货员把甲卡张数算作乙卡张数,把乙卡张数算作甲卡张数,要找还小明3.2元.问小明买甲、乙卡各几张?
解:甲卡与乙卡每张相差 1.5-0.7= 0. 8(元),售货员错找还小明3.2元,就知小明买的甲卡比乙卡多3.2÷0.8=4(张).
现在已有两种卡张数之差,只要求出两种卡张数之和问题就解决了.如何求呢?请注意
1.5×甲卡张数+0.7×乙卡张数=21.4.
1.5×乙卡张数+0.7×甲卡张数=21.4-3.2.
从上面两个算式可以看出,两种卡张数之和是
[21.4+(21.4-3.2)]÷(1.5+ 0.7)= 18(张).
因此,甲卡张数是(18 + 4)÷ 2= 11(张).
乙卡张数是 18-11= 7(张).
答:小明买甲卡11张、乙卡7张.
注:此题还可用鸡兔同笼方法做,请见下一讲.
例7 有两个一样大小的长方形,拼合成两种大长方形,如右图.大长方形(A)的周长是240厘米,大长形(B)的周长是258厘米,求原长方形的长与宽各为多少厘米?
解:大长方形(A)的周长是原长方形的
长×2+宽×4.
大长方形(B)的周长是原长方形的
长×4+宽×2.
因此,240+258是原长方形的
长×6+宽×6.
原长方形的长与宽之和是
(240+258)÷6=83(厘米).
原长方形的长与宽之差是
(258-240)÷2=9(厘米).
因此,原长方形的长与宽是
长:(83+ 9)÷2= 46(厘米).
宽:(83-9)÷2=37(厘米).
答:原长方形的长是46厘米、宽是37厘米